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ICAgen, Inc., P.O. Box 14487, Research Triangle Park, North Carolina 27709

ReceiVed August 25, 2000

With the emergence of combinatorial chemistry, whether based on parallel, mixture, solution, or solid phase
chemistry, it is now possible to generate large numbers of diverse or focused compound libraries. In this
paper we aim to demonstrate that it is possible to design targeted libraries by applying nonparametric statistical
methods, recursive partitioning in particular, to large data sets containing thousands of compounds and
their associated biological data. Moreover, when applied to an experimental high-throughput screening (HTS)
data set, our data strongly suggest that this method can improve the hit rate of our primary screens (about
4- to 5-fold) while increasing screening efficiency: less than one-fifth of the complete selection needs to be
screened in order to identify about 75% of all actives present.

Introduction

In recent years, combinatorial chemistry coupled with
high-throughput screening (HTS) has dramatically increased
the number of compounds that are screened against many
biological targets. Despite the resulting explosion of screen-
ing data for a given target, hit rates still tend to be quite low
(often less than 1%). Our interest in discovering novel, small
molecule modulators (blockers, openers, or otherwise) of ion
channels has directed our attention to exploring methods for
improving hit rates beyond those obtained with historically,
randomly or diversely chosen compound collections.

Ion channels are membrane embedded proteins of multi-
meric composition with intrinsic ion conduction properties.
The intended pharmacological endpoint, i.e., activation,
prolongation of activation, termination of activation, or block
of the target ion channel, is dependent on the site and mode
of binding of the ligand to the channel. Consequently, we
are forced to reevaluate the leading pharmacological para-
digm that we can competitively displace a natural or
xenobiotic agent from a binding site. Therefore, to further
our understanding of ion channel biology and medicine, we
wanted to find an efficient way to identify modulators of
multiple ion channel subtypes within ion channel families,
so-called gene families, without focusing on a single binding
site or mechanism.

Our approach needed to encompass the following: (1) the
ability to increase the efficiency of our primary screens, (2)
the option to pursue multiple chemotypes in order to develop
compounds along parallel product lines, and (3) the ability
to explain nonlinear structure-activity relationships. Various
deterministic methods have been applied to try to resolve
similar problems.1-8 The most limiting condition for these

methods, however, is probably the requirement of the training
set to encompass all chemotypes present in the test set, the
so-called knowledge domain. Whereas this may not be of
concern when discerning drug-like from nondrug-like com-
pounds based on sufficiently diverse databases such as ACD,9

CMC,10 or WDI,11 this becomes a self-limiting “conservatism
in design” restriction12 when screening for as yet unidentified
activity in a narrowly defined chemical library.

After review and testing of several possible solutions, such
as ANOVA, hierarchical cluster analysis, principal compo-
nents analysis, factor analysis, genetic function approxima-
tions, partial least squares fitting, multiple pharmacophore
based models, and combinations thereof, we explored non-
parametric methods, and recursive partitioning in particular.
Methodologically, we can distinguish parametric methods13-17

(i.e., a combination of chemical descriptors explains and
predicts the biological activity of each compound in the
training set) from nonparametric methods (i.e., one can
calculate the chance of a compound being within a range of
biological activities based on the distribution of chemical
and biological descriptors in the training set). The limitation
of all these QSAR methods is that a single (quasi-) linear
equation is presumed to account for all biological activity.
Whereas this may hold true for selective, reversible, and
competitive binding models, these conditions need not
necessarily apply to HTS data sets. Furthermore, past
research here and elsewhere18-20 indicates that it is very likely
that chemical modulators of ion channels, especially those
that are endogenously regulated by membrane potentials (e.g.,
the Kv gene family) or ion concentrations (e.g., Ca2+ and
Cl- channels), are noncompetitive, or uncompetitive, allo-
steric modulators. Therefore, it becomes imperative that
analysis methods are applied that allow for the presence and/
or selection of multiple binding mode models, rather than
converge on a single unified model.* To whom correspondence should be addressed.
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Recursive partitioning (RP) is a nonparametric classifica-
tion technique that has been shown to have applicability in,
e.g., a clinical setting.21-25 In studies designed to identify
risk subgroups, RP successfully identified subgroups with
distinct risk assessments that had previously not been
identified using more traditional logistic regression.21,26This
finding agrees with our assertion that RP may be able to
identify discreet binding modes within an HTS data set. An
overview and comparison of various statistical methods, e.g.,
linear discriminant analysis, logistic regression, nearest
neighbor clustering, and recursive partitioning, were pre-
sented by Hand several years ago.23

With the advent of combinatorial chemistry and HTS, the
data structure and organization increasingly seem to more
closely resemble a rather disparate patient population than
an idealized lead optimization set such as envisioned by
Topliss27,28 and employed by many medicinal chemists.
Comparisons of nonparametric recursive partitioning to
parametric analyses have been performed22,25 and generally
indicate that RP is significantly better at identifying syner-
gistic and nonlinear relationships, whereas multivariate
techniques perform better at late stage analyses with more
homogeneous data sets.

RP is a method whereby a group of compounds is
recursively (i.e., starting with the complete set and ending
with the smallest possible or allowable subset) split at a
branch point into two statistically distinct nodes (subsets).29

Whereas variable selection in parametric methods is deter-
mined by their impact on correlation, RP focuses on
classification. As such, RP has the possibility to optimize
for synergism rather than additivity, for nonlinear relation-
ships over forced (quasi-) linearity, and for multiple endpoints
over single endpoints. In addition, during variable selection
RP takes into account the prior probabilities and penalties
for misclassification. In contrast, RP has diminishing num-
bers in each discriminant step, whereas parametric methods
retain all information elements during the equation building
phase. The most significant drawback to the application of
RP is perhaps that it may underestimate the predictive ability
of linear and continuous factors.22

Recursive partitioning itself was demonstrated by Young
and Hawkins,30 as early as 1995, to be a powerful method
of harnessing the information content of a combinatorial
chemical library. The size of the chemical library, a 29

factorial design of 512 compounds, and a well-defined target
set the precedent for the entire field. Whereas a typical SAR
series usually comprises as few as 20 or as many as 50
compounds, this approach increases the dimension of the
problem at least by an order of magnitude. At the conclusion
of their paper, the authors mused “If there were more
chemical components at each position and the components
were described with many numerical descriptors, then the
analysis problem would be more difficult (and realistic). The
problem would be much more difficult (impossible?) if the
set of compounds was some sort of catch-as-catch-can
collection.”

Rusinko et al.31 recently reported on a particular imple-
mentation of recursive partitioning, i.e., SCAM (statistical
classification of the activities of molecules), to identify

structure-activity relationships in large data sets. They
documented how they were able to effectively use this
method to develop a structure-activity relationship (SAR)
for a set of 1650 compounds with 6405 binary descriptors
and obtain up to a 15-fold enhancement over the random hit
rate while virtually “screening” the WDI.9

Our study differs from these earlier reports, and those using
other data sets,8,9,32 in that we use both combinatorial
chemistry and experimental data derived from an HTS assay.
Furthermore, we present evidence that we can increase the
scale of the problem by another 1 to 2 orders of magnitude
and obtain significant results. In this paper, therefore, we
aim to prove that RP is an effective method in harnessing
the chemical and biological information contained in a
chemical library and its HTS data, even in the face of the
odds presented above.

Methods

A 20 986-member library from our compound inventory
was selected and submitted for screening. This chemical
library was entirely composed of combinatorial chemistry
derived compounds, synthesized either by solid or by liquid
phase parallel methods. The biological activity of all library
members was determined individually. A set of eight
randomly selected plates, accounting for 640 library mem-
bers, was analyzed by LC/MS. Of the total number of
samples analyzed, 81% were found to be better than 80%
pure, and 66% were found to be better than 90% pure. The
median, average, and standard deviation values were 94%,
88%, and 15%, respectively. Therefore, the purity of the
majority of the library members was deemed to exceed 80%.
The combinatorial process was directed by synthetic feasibil-
ity without prior knowledge of the biological target. Since
the chemical library was set up to take advantage of synthetic
feasibility rather than molecular diversity, no diversity
analysis prior to compound selection was performed.

The set was mathematically divided into a 5000-member
training set based on either diverse selection (DS; D-optimal
design strategy) or random selection (RS; iteratively obtained
using a random number generator) and into a 15 986-member
test set. Biological data were generated in a high-throughput
screening (HTS) fashion using a cell-based method propri-
etary to ICAgen, Inc. The library members were subsequently
assigned to activity bins based on their relative biological
activity. For the quaternary analysis: 147 in class 4 (“highly
active”), 471 in class 3 (“moderately active”), 912 in class
2 (“weakly active”), and 3470 in class 1 (“inactive”). For
the binary analysis: 147 in class 4 (“active”) and 4853 in
class 1 (“inactive”). Since the data are experimental in nature,
a certain number of false positives and false negatives are
expected to occur. For the purposes of this study, no attempt
was made to identify either, nor were corrections introduced
to minimize the impact of these experimental errors. We
intend to address this particular matter in a future paper.

We generated 1387 descriptors for each of the 20 986
members of the chemical library. First, 229 descriptors,
distributed over the following categories, were calculated
using the commercially available implementation of Cerius2

(version 4.0; Molecular Simulations Inc., San Diego, CA):
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fragment constants, conformational descriptors, electronic
descriptors, graph-theoretic descriptors, topological descrip-
tors, information-content descriptors, spatial descriptors,
structural descriptors, and thermodynamic descriptors. Then
166 public ISIS MolsKeys were generated using ISIS/Host
(version 3.0; MDL Information Systems Inc., San Leandro,
CA), and 992 2D FingerPrints were generated using Unity
(version 4.0; Tripos Inc., St. Louis, MO).

The DS training set was obtained using the diverse
compound selection through a D-optimal design strategy
(Euclidian distance metric, Tanimoto similarity coefficient,
10 000 Monte Carlo steps at 300 K, with a Monte Carlo
seed of 11122, and termination after 1000 idle steps), as
implemented in Cerius2 (version 4.0; Molecular Simulations
Inc., San Diego, CA).

The diverse selection of 5000 compounds (DS) was
randomized with regard to the biological activity, yielding
the diverse/randomized (DR) training set. To that purpose,
10 independent rounds of randomization were performed
where compounds were randomly (using a random number
generator) assigned to the activity bins proportionately to
their initial distribution but without regard to their chemical
structure and their measured biological activity.

RP is a method whereby a group of samples is recursively
split at a branch point into two statistically distinct nodes.
The statistical evaluation is performed using a Student’s
t-test. The data matrix consists of columns for each of the
descriptors and rows for each of the samples in the training
set. Each descriptor column is subjected to a process called
splitting, in which the range (highest descriptor value-
lowest descriptor value) is split into subranges. By system-
atically varying the splitting process, the statistical signifi-
cance of each descriptor and its correlated range is deter-
mined. Branch points are identified by systematically
evaluating the data matrix for the possibility to divide the
matrix into statistically differentiated subsets based on their
assigned category. The statistically most significant split then
becomes a branch point in the RP tree. Each subset in the
matrix is subsequently analyzed for further significant
differentiation. The process ends when there are either no
more significant splits to be obtained or when the minimum
number of samples per node is reached. The program then
proceeds to prune the tree to the appropriate tree depth as
defined at the outset of the process. Sometimes, a molecule
is included in a node because one of its descriptors increases
the probability for it to be classified as “highly active”. If
this molecule, by virtue of its measured activity, belongs to
a class other than the one to which it has been assigned,
then that molecule is a “false positive” within that node. This
at times occurs with a series of similar (congeneric)
compounds. Conversely, molecules may have been elimi-
nated from a node based on dissimilarity, but they should
have been included. These molecules are “false negatives”.
Statistical models are generally geared to minimize both the
number of false negatives and false positives. The default
Gini splitting method is more susceptible to over training
due to high node purity than parametric methods, but this
has been at least partially addressed with the introduction
of the Twoing splitting method that balances branches in

RP trees.29 The reader is kindly referred to the software
documentation for a more detailed description of the RP
process (Cerius2, version 4.0; Molecular Simulations Inc.,
San Diego, CA). A method optimization/evaluation protocol
was written that varied the RP conditions systematically. (The
defaults as implemented in Cerius2 are given in boldface.)
The following conditions were considered: weighting by
Classes(not varied), i.e., each class is considered of equal
importance to the model rather than each compound; splitting
method ) Twoing/Gini /Greedy, i.e., the formalism that
determines how groups are divided or partitioned into
statistically distinct nodes or subgroups; maximum tree depth
) 5/6/7/8/9/12/16/20, i.e., the maximum number of splits
that may occur before the partitioning process terminates;
pruning ) moderate (not varied), i.e., the procedure that
determines the appropriate statistically significant tree depth
for each node; minimum number of samples per node)
1/100th(not varied), i.e., a node or subgroup cannot contain
fewer than 1% of all compounds in the training set;
maximum number of knots per split) 20-150 (in incre-
ments of 5), i.e., the maximum number of ways a descriptor
range may be divided before statistical relevance is deter-
mined; and when applicable, number of cross-validation
(XV) groups) 2, 3, 5,10, i.e., the number of groups used
to test the statistical stability or significance of the model
conditions. Therefore, any particular set of conditions can
be characterized by “splitting method-maximum tree depth-
maximum number of knots-number of XV groups (when
applicable)”.

Results and Discussion

General Definitions.There are two distinct measures for
determining the success of an RP analysis: (1) “fold
enrichment” and (2) “percent class correct” for the training
set and the corresponding “percent hit recovery” for the test
set.

(1) “Fold enrichment” represents the percentage of cor-
rectly predicted “hits” divided by the natural hit rate (the hit
rate of the overall compound collection) expressed as a
percentage, where the definition of “hit rate” is dependent
on the class assignment. Data presented in this paper refer
to class 4, i.e., “highly active” compounds, only. The
optimization traces for the fold enrichment are presented in
Figure 1.

(2) “Percent class correct” for the training set and the
corresponding “percent hit recovery” for the test set are
measures of the number of compounds correctly predicted
to be “highly active” as a percentage of the total number of
compounds known to be “highly active”. The optimization
traces for the percent hit recovery are represented in Figure
2.

Additionally, a “retrieval rate” can be defined. This is the
number of compounds classified by the RP model as having
an increased probability of being “highly active” expressed
as a percentage of the total number of compounds under
consideration in the test set.

Computational Methods Evaluation. A. Training Set
Selection. The information content of the training set,
whether a combinatorial library candidate for HTS or a
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statistical analysis data set, influences the efficiency and/or
utility of the analysis methodology. For this reason different
experimental design strategies have been developed for
diverse compound selection from a larger chemical library
or chemical diversity space.33,34 The D-optimal design33

strategy, as implemented in Cerius2, was used to select our
original 5000-member DS training set from the complete
20 986-member chemical library. In addition, we also
generated a 5000-member random selection (RS) training
set. Contrary to the DS training set, the RS training set is a
stochastic sampling of the complete library and therefore
represents the information content in proportion to its
distribution in the complete library. In a sense, the informa-
tion content is lower in the RS training set than in the DS
training set because densely populated areas, with repetitive
information, are sampled more frequently than sparsely
populated areas, containing unique information, by random
selection methods.

In one experiment, the RS training set (Twoing-8-90)
predicted 5.7-fold enrichment, 60% class correct, and yielded
4.8-fold enrichment, 52% hit recovery (Table 1). The RS
training set yielded even less predictive and unstable behavior
at a tree depth of either 6 or 7 (Figure 5c). Although the
fold enrichment, which reflects the density of the information

matrix, compares favorably with the DS training set (4.2-
fold when taken at Twoing-7-90, see Table 1), both the
percent hit recovery and percent retrieval rate, which reflect
the information content, are decreased. This probably is a
reflection of the elimination of tentative false positives from
the prioritization list. We intend to further investigate the
impact of compound selection on the utility of RP, or other
nonparametric methods, as applied to HTS data.

B. Method Optimization. The efficiency of RP can be
expressed either as fold enrichment, or as percent class
correct or percent hits retrieved for the training set and the
test set, respectively. Ideally, the numbers for the training
set and the test set match closely, i.e., the model shows good
overall predictivity. But which value is the determinant factor
for success?

One method, consensus scoring, emphasizes increases in
hit rate by eliminating false positives from the prioritization
list.35 The aim of our analysis of HTS data is not simply
enhanced hit rates, although it features prominently in the
evaluation of the methodology. The aim, as we’ve chosen
to define it, is (1) to increase the efficiency of our primary
screens, i.e., increased hit rates; (2) to identify and pursue
multiple chemotypes in order to develop compounds along
parallel product lines, i.e., to achieve the highest percentage
of chemotypes retrieved possible; and (3) the ability to
explain nonlinear structure-activity relationships. Other
factors such as the cost of a compound collection36 may also
contribute to the overall efficiency of the method, but they
are not explicitly considered in this analysis.

Fold enrichment and percent hit recovery are not neces-
sarily independent, rather they are interdependent. As the
models become more sophisticated, e.g., increased tree depth,
the activity is more narrowly defined, and as a result more
false positives (compounds initially incorrectly included as
active, but by a more refined model correctly identified as
inactive) are eliminated from the model. However, concur-
rently, the method also eliminates more false negatives
(compounds initially correctly identified as active, but
subsequently incorrectly classified by the model as inactive),
resulting in a better fold enrichment in the remaining models
but a lower overall percent hit recovery (Figure 3).

Furthermore, we also considered the variability and
reliability within the protocol: a low knot limit and small
tree depth contribute to unstable behavior, whereas a high
knot limit and large tree depth contribute to overfitting and
add to computational expense (Figures 1 and 2). Therefore,
we tried to identify the conditions that reliably and repro-
ducibly yielded a model at an acceptable computational cost.
The Twoing method (Figure 4a) balances the distribution of
the branches of the tree, whereas the Gini method (Figure
4b) strives for the highest node purity.29 When these two
methods converge with regard to the tree depth, it can be
argued that a suitable tree depth has been obtained. In the
DS model, the maximal tree depth at which this occurs is 7
(Figure 2). Conversely, the Greedy method shows poor
optimizability, and a low tree depth and knot limit will result
in a rather poor predictive power of the model (Figure 4c).

To evaluate whether a method exhibits stable behavior or
yields variable models due to perturbations we had to

Figure 1. Optimization traces (fold enrichment). The fold enrich-
ment obtained for the test set is plotted as a function of both the
knot limit and the tree depth.

Figure 2. Optimization traces (percent hit recovery). The percent
hit recovery obtained for the test set is plotted as a function of
both the knot limit and the tree depth. The dotted frame signifies
the reference panel for Figures 4 and 5.
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establish a reference frame. One commonly employed
reference frame is the running average of the centroid and
its adjacent neighbors. The (first order) derived value
“absolute value of the differential (running average-
centroid)” then reflects the local variability of the function.
If this value is close to zero, it indicates a “local steady-
state”. To differentiate between a “local steady-state” on an
incline (all consecutive increment values are positive) or
decline (all consecutive increment values are negative) of
the optimization trace and one on a level region of the
trajectory (consecutive increment values average out to zero),
it becomes necessary to evaluate the “first derivative vs the
knot limit” of the (second order) function. However, it is
rather straightforward to inspect the curve visually and
distinguish between the three possibilities. This then obviates
the necessity to formalize this criterion.

If both the fold enrichment and the percent class correct
converge on the “local steady-state” defined by a particular
knot limit, then that knot limit is presumed to be the
minimally acceptable knot limit. We have found it useful to
evaluate a “local steady-state” on three consecutive dif-
ferential values, i.e., a knots span of five consecutive steps.
This is equivalent to three consecutive running averages and

spans a total of 20 knots between the highest and the lowest
conditions in the series. We found empirically that by
defining a “local steady-state” (Figures 1 and 2) as variations
of less than 0.1-fold enrichment and 2% class correct, we
could eliminate many of the areas with irregularities. RP
models selected with these criteria also tended to be more
predictive for the test set, in both fold enrichment and percent
hit recovery. These values are slightly more restrictive than,
but in general agreement with, a standard deviation of 0.1-
fold and 7% obtained during the randomization and cross-
validation experiments (Table 1; Twoing-7-90-3).

The minimal knot limit in the DS optimization protocol
at a maximal tree depth of 7 is therefore determined to be
90. The resulting values (Twoing-7-90) are 4.4-fold enrich-
ment and 75% class correct for the training set, and 4.2-fold
enrichment, a 71% hit recovery, and a 16% retrieval rate
for the test set (Table 1). Since the data obtained from the
test set are a relatively close reflection of the data from the
training set, it is very likely that this approach is suited to
select valid and predictive methods. Because the optimal
conditions are inherently dependent on the training set, we
expect that changes in the training set, such as changes in
the chemical composition or in the biological data, such as
a different target selection, will require reoptimization of the
RP conditions.

In addition, we also evaluated the built-in autoselection
protocol, i.e., the “no knot limit” setting, which yielded the
following data: Twoing-7-noknots predicted 4.1-fold enrich-
ment and 62% class correct, and yielded 3.5-fold enrichment,
56% hit recovery, and a 15% retrieval rate (Table 1). The
discrepancy between our optimal conditions and those
selected by the program probably find its roots in the un-
disclosed optimization criteria of this particular implementa-
tion. As a result, the Twoing-7-noknots protocol has a lower
predictive capability for this data set than the models with
manually and empirically determined optimal conditions.

C. Randomization and Cross-Validation Experiments.
When evaluating the efficiency of any methodology, one has
to take into account how predictive the method developed

Table 1. Selected Results from RP Models: Principal Output Measurements for Each of the Systematic Variations in the
Training Set, and the Actualized Measurements for the Test Set

training set test set

protocola
fold

enrichment
% class
correct

fold
enrichment

% hit
recovery

% retrieval
rate

diverse selection Gini-7-90 4.4 74 4.3 70 15
Twoing-7-90 4.4 75 4.2 71 16
Twoing-7-90-2 3.1 61 4.2 71 16
Twoing-7-90-3 3.2 59 4.2 71 16
Twoing-7-90-5 3.2 48 4.2 71 16
Twoing-7-90-10 3.6 57 4.2 71 16
Twoing-7-noknots 4.1 62 3.5 56 15
Twoing-7-95 4.1 76 3.9 75 18

2500 diverse Twoing-7-110 5.8 64 4.2 62 14
diverse/randomized Twoing-7-90 1.8( 0.3 44( 16 0.9( 0.4 26( 14 27( 12

Twoing-7-90-3 1.0( 0.1 28( 7 0.9( 0.4 26( 14 27( 12
random selection Twoing-8-90 5.7 60 4.8 52 10
ISIS MolsKeys Twoing-7-20 3.5 65 3.1 62 19
Unity FingerPrints Twoing-7-20 4.1 73 3.5 67 18
binary analysis Twoing-8-45 4.0 96 3.0 71 23
binary analysis+ ISIS MolsKeys Twoing-7-20 3.4 92 2.6 73 27
a The protocol is defined as “splitting method”- “tree depth”- “knot limit” - “number of XV groups”.

Figure 3. Interdependency of optimization values. The fold
enrichment and percent hit recovery are (inversely) dependent on
the tree depth.
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on the training set is when applied to the test set. In
parametric methods this usually is quantitated in the form
of correlation coefficients and cross-validation values. Due
to the noncorrelative nature of nonparametric methods in
general, regression has so far been inpracticable. Recently,
a regression method for nonparametric evaluation of small
data sets has become available.37 The validation method
implemented in Cerius2 is cross-validation. In addition to
the cross-validation experiments described below, we per-
formed 10 independent randomization trials to remove
selection bias.

The results of the randomization experiment (n ) 10;
Twoing-7-90) are presented in Table 1. Under these condi-
tions, RP apparently overstates its efficiency with regard to
a fully randomized training set. This may be a result of the
distribution of chemotypes in the training and test sets, but
it cannot be unambiguously proven. More importantly, cross-
validation of the DR training set (Twoing-7-90-3) yielded
results that are in good agreement with results obtained with
the test set. This further supports the notion that there is a
bias present in the training set that is not present in the test
set. The only difference in composition between the test set
and the training set is a mathematically introduced one. The
mathematical process that introduced this bias must have
been the diverse selection process that separated the training
set from the test set. It is therefore intuitive, but not factually
proven, that the measured bias is a result of the distribution
of chemotypes between training and test sets.

The cross-validation (XV) experiment led us to investigate
how the “information content” of the training set influences
the outcome of the analysis. We found that at a low number
of XV groups (2 or 3), i.e., high information dilution, the
predictivity of the models fell short of the expectations based
on a larger number of XV groups (5 or 10). When the XV
experiment was run with five XV groups, i.e., 80% of the
training set, the model values of the training set and the test
set were in good agreement (Table 1). Alternatively, when
two XV groups were used, i.e., 50% of the training set, the
XV model was less predictive of the full model. A similar
effect is seen when the full training set is reduced to 2500
diversely selected compounds from the original 5000-
member DS training set. Twoing-7-110 predicted 5.8-fold
enrichment, and yielded 4.2-fold enrichment (Table 1), but
with rather unstable optimization traces (not shown) and a
significant discrepancy between predicted and realized yields.
This less predictive model reflects the loss of information
content in the training set selection, and deserves a closer
examination.

This last point is also illustrated with the results presented
in Figure 5. Here, we changed the binning scheme to be more
restrictive when assigning compounds to the more active
classes (Table 4). This had two intended effects: (1) it
decreased the initial hit rate, thereby allowing us to focus
on the more potent hits only; and (2) it diluted the
information content available to the RP algorithm. Rather
surprisingly, we found that models based on these more

Figure 4. Comparison between protocols. The percent hit recovery obtained for the test set is plotted as a function of both the knot limit
and the tree depth. (a) Application of the Twoing splitting method to the DS data set. (b) Application of the Gini splitting method to the
DS data set. (c) Application of the Greedy splitting method to the DS data set. (d) Application of the Twoing splitting method to a binary
distribution of the DS data set.
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restrictive binning schemes were less stable, less predictive,
and had an overall lower yield (Figure 5b,d). However, these
results are entirely consistent with the findings from our
binary analysis, as discussed below. It probably finds its
origin in the fact that prediction accuracy is significantly
compromised near any artificial threshold, such as repre-
sented by the binning schemes in Table 4.

Experimental Results. A. Overall Results.When the
criteria and considerations detailed above (Computational
Methods Evaluation section) were applied to the 5000-
member DS training set, we found that the models converged
on a tree depth of 7 (Figures 1, 2, and 4). The resulting
preferred RP model (Twoing-7-95) yielded a 3.9-fold enrich-
ment and a 75% class correct for the test set (Table 1). The
model predicted that 18% of the compounds in the test set
belong to the “highly active” class, i.e., a reduction in the
number of compounds to be screened by 82%. This 18%
retrieval rate should recover more than 18% of the “highly
actives” present in the test set (if hits were proportionally
distributed between the 18% selected and the 82% remaining
compounds) in order to be deemed successful. Indeed, in
using this model we retrieved 75% of all “highly active”
compounds present, thereby enhancing our hit rate some
4-fold. This result satisfies one of the criteria laid out in the
Introduction: the ability to increase the efficiency of our
primary screens. There currently are two limitations to this
method that require further attention. The first limitation is
the percent hit recovery. This directly impacts our ability to

satisfy our second condition: the option to pursue multiple
chemotypes in order to develop compounds along parallel
product lines. This aspect of the analysis is addressed
immediately below (Chemotypes and Nodes section). The
second limitation is the percent retrieval rate. If we con-
sistently retrieve about 20% of the total test set, than we
cannot attain better than 5-fold improvement using this
method. We know, since this is a retrospective analysis, that
the hit rate in both the training and the test set is well below
20%. In fact, the hit rate is on the order of 3%, which means
that the maximal theoretical improvement is about 30-fold.
We are currently investigating how the false positives in an
HTS data set can be identified and subsequently eliminated
from the “highly active” category. Presumably, this should
reduce the interference of false positives with the classifica-
tion and thereby reduce the number of compounds errone-
ously predicted as “highly active”. This would in turn reduce
the number of compounds retrieved, and concurrently
decrease the percent retrieval rate and increase the efficiency
of the methodology.

B. Chemotypes and Nodes.As stipulated earlier in this
paper, the distribution of chemotypes within the compound
collection may play a role in the performance of the RP
models. This directly impacts our wish to pursue multiple
chemotypes at the same time in order to develop compounds
along parallel product lines. Sometimes compounds can be
used for different indications, such as gastrointestinal versus
central nervous system diseases. At other times, it can be

Figure 5. Comparison between training sets. The percent hit recovery obtained for the test set is plotted as a function of both the knot limit
and the tree depth. (a) Use of an 80% threshold value applied to the DS data set. (b) Use of an 85% threshold value applied to the DS data
set. (c) Use of an 80% threshold value applied to the RS data set. (d) Use of a 90% threshold value applied to the DS data set.
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quite useful to have one lead compound progressing toward
the clinic while another one serves as a so-called “back-up”
compound. After all, xenobiotics are frequently not readily
absorbed, and can be extensively metabolized and excreted.

In an RP model each terminal node represents a different
stratification of the data that is not necessarily analogous to,
or even consistent with, another node. This opens up the
possibility that different nodes may represent differences
either in chemical or in biological stratification. We therefore
investigated the results for each of the terminal nodes
individually. On the basis of a general definition of chemical
core structures derived from the combinatorial synthetic
process, eight distinct chemotypes could be identified within
the training and test sets (CT1 through CT8).

In Table 2, we have collected data for the terminal nodes
in the DS/Twoing-7-90 RP model. It is apparent that there
is “significant” variability between the nodes. This may
indicate the presence of distinct “binding modes” or allo-
sterism in the data set. Whereas some nodes, e.g., node V,
show robust (about 10-fold) increases in fold enrichment in
both the training and the test set, other nodes, e.g., node II
and III, do not perform as well. Moreover, the results for
node VII completely miss the mark, which may merely be
a reflection of the small number of hits in the training set
(five) and the test set (two). In contrast, the results obtained
for node VI reflect the overall results, because of the large
number of compounds (1186) assigned to that node.

Differentiation by chemotype of the terminal nodes (Table
3) indicates that all chemotypes representing “hits” are
correctly identified by this method. Although only about 70%
of all “hits” are retrieved using this RP model, it is gratifying
to see that a full complement of chemotypes has been
identified. This then leads us to believe that we have
successfully established our second goal, which is the option
to pursue multiple chemotypes with demonstrated activity
against a single biological target. Again, we must keep in
mind that the set of compounds identified by the HTS assay
as “highly active” may contain some false positives and
equally well may have failed to identify false negatives. The
statistical methods could have left out false positives (by
chance or by failure to conform to the model) and may have
included some of the false negatives. This would be reflected
in an overall lower percent hit recovery and a higher percent
retrieval rate. Until we design an experiment that will
unambiguously identify false positives and false negatives,

we can only surmise that the overall impact of falsely
identified compounds is negligible. Whereas it may be
possible to identify false positives from an HTS assay by
performing some sort of secondary assay, due to the sheer
numbers involved it will be virtually impossible to address
the matter of false negatives in a systematic fashion. We
are planning to evaluate the impact of identification of false
positives on RP models soon.

There seems to be a preponderance of a particular
chemotype (CT7) in nodes II, III, IV, VI, and VIII, well
above the prevalence in the overall distribution. Moreover,
this chemotype is lacking in nodes V (which comprises
mainly CT1 and CT3) and VII (in majority CT6), whereas
CT4 is only present in node VIII. These results support the
notion that at least three, if not more, different “binding
modes” may be represented and identified by RP analysis
of this data set.

Cross-correlation of terminal node and chemotype con-
tributions demonstrates that node V, which lacks CT7 but
contains a majority of CT3, yields the highest fold enrich-
ment: 10-fold. Conversely, node III consisting of 100% CT7
yields a below average result: 1.9-fold enrichment. These
results are indicative of a nonlinear structure-activity
relationship within this data set.

This, then, brings us back to the earlier supposition that
the HTS data may not be normally distributed. As can be
seen in Figure 6, the HTS data (plotted points) do not follow
a strictly Gaussian behavior (fitted line). Rather, the HTS
data have a higher than normal incidence in the 30th-50th
percentile range and a lower than normal incidence at the
higher than 70th percentile range. Nevertheless, the central
tenet of the central limit theorem is that data sets will appear
to be normally distributed as long as the sample size is large
enough. At a sample size of over 20 000 data points, our
data set certainly has the resemblance of being normally
distributed. It does, however, raise the question of whether
a collection of multimodal or multiple binding site models
could be hidden within this distribution. The results from
the RP analyses suggest that the latter is indeed the case,
but it cannot be unambiguously proven or disproven based
on the distribution data alone.

C. Alternate Descriptor Sets.Whereas to the medicinal
chemist it may be obvious that 3D physicochemical or
stereochemical information is as important a determinant of
biological activity as the chemical composition of a com-
pound, computational chemical methods have focused mainly
on describing chemical (diversity) space in two dimensions,
e.g., MDL MolsKeys38 and 2D FingerPrints,39 to facilitate
throughput and ease of calculation (no geometry optimiza-
tion, and conformer analysis are required for 2D descriptors).
Recently, progress has been made to describe compounds
in terms of their 3D information content, such as pharma-
cophore definition triplets,39 or a combination of 2D and 3D
descriptors such as those implemented in CODESSA40 (com-
prehensive descriptors for structural and statistical anal-
ysis). Electrotopological descriptors, as represented by the
E-state keys of Kier and Hall41 and implemented in Cerius2,
try to incorporate 2D as well as 3D information by describing
the chemical connectivity (topology) of a molecule.

Table 2. Results per Terminal Node (DS80: Twoing-7-90):
Distribution of Each of the Compounds Assigned to Class 4
with Respect to Their Placement in the Terminal Nodes
I-VIII

hits class 4 hit rate (%) fold

node traina test train test train test train test

I 12 38 107 367 11.2 10.4 3.8 3.5
II 4 9 84 242 4.8 3.7 1.6 1.3
III 4 8 52 147 7.7 5.4 2.6 1.9
IV 4 8 51 207 7.8 3.9 2.7 1.3
V 30 90 103 304 29.1 29.6 9.9 10.1
VI 46 136 379 1186 12.1 11.5 4.1 3.9
VII 5 2 50 153 10.0 1.3 3.4 0.4
VIII 14 25 147 487 9.5 5.1 3.2 1.8

a train ) training.
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Recently, Dixon and Villar42 reported on their efforts to
distinguish three different pharmacological classes from those
present in the CMC,10 primarily based on similarity meas-
ures. Since they demonstrated superiority of the ISIS
MolsKeys over Molconn-X descriptors, we investigated the
impact of descriptor set selection on the outcome of our RP
analysis.

We designed an experiment where the 166 public ISIS
MolsKeys were represented in binary form (0 defines the
absence, and 1 the presence of a particular feature), and found
that RP (Figure 5a,b; Twoing-7-20) predicted a 3.5-fold
enrichment and 65% class correct and yielded a 3.1-fold
enrichment, with a 62% hit recovery and a 19% retrieval
rate (Table 1). Whereas Dixon and Villar42 were able to
correctly identify close to 90% of the actives in a H2 receptor
antagonist data set by examining 20% of the compounds and
demonstrated a 4-fold enhancement over the random sam-
pling method, we were unable to achieve better results with
the ISIS MolsKeys than with our original descriptor set. This
probably reflects the presence of descriptors in our descriptor
set other than the substructurally defined ISIS MolsKeys.

In addition, we designed an experiment based on 992
bitkeys derived from the Unity 2D FingerPrints (2DFP).
Under these conditions (Figure 5a,b; Twoing-7-20), the
algorithm predicted a 4.1-fold enrichment and 73% class
correct and yielded a 3.5-fold enrichment, with a 67% hit
recovery and a 18% retrieval rate (Table 1). Likewise, this
probably reflects the absence of physicochemical (whole
molecule) and 3D descriptors required for optimal perfor-
mance by this data set.

D. Binary Analysis. Gao and Bajorath43 reported that an
increase in accuracy from 84% for 2D QSAR to 94% could
be obtained using binary QSAR. We found that RP (Twoing-
8-45; Figure 4d) based on a binary distribution decreased
both the accuracy (from 75 to 71% hit recovery) and the
efficiency (from 3.9- to 3.0-fold) of the models. This reflects
a decrease in predictivity of the model rather than an
improvement of the training set model and also results in
unstable optimization traces. We therefore speculate that the
“fuzzy assignment” approach that we have employed, i.e.,
four activity classes rather than just two, allows the algorithm
to compensate for false positive and false negative assign-
ments, without compromising the node purity. A strictly
binary classification forces the algorithm to apply penalties
to, e.g., compounds having data that fall within a class 3
classification, but which the model assigned to class 4,
whereas the distinction in HTS data between “highly active”
and “moderately active” is not necessarily that clear (Table
4) and possibly within the statistical confidence interval. This
hypothesis is further supported by the finding of Gao and
Bajorath that the prediction accuracy was significantly
compromised (about 60% accuracy) near the binary thresh-
old.43 This problem is exacerbated in the case of percent
inhibition data, such as associated with our HTS data set,
where the threshold is usually set at the edge of the upper
confidence interval, resulting in overlap of the “active” and
“inactive” categories whereby most “active” compounds
(within the uncertainty) could equally well be placed in the
“inactive” category, but only a limited number of “inactive”
compounds qualify to be placed in the “active” category.
The problem is also compounded by the ceiling effect
imposed on the data set by setting a 100% limit as the
maximal response, which restricts all compounds passing the

Table 3. Distribution of Chemotypes per Terminal Node (DS80: Twoing-7-90): Relative Distribution of Each of the
Chemotypes (CT1-CT8) with Respect to Their Occurrence in the Terminal Nodes I-VIII

% per node % overall

predicted actual

I II III IV V VI VII VIII class 4 hits library

CT1 5.3 23.0 0.0 12.8 22.2 15.5 14.8 0.3 12.4 23.9 10.5
CT2 13.9 4.9 0.0 0.0 0.2 0.9 0.0 15.5 4.7 8.9 6.9
CT3 32.7 5.8 0.0 0.0 58.5 5.7 5.4 0.3 12.7 26.1 7.5
CT4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0 3.0 1.5 9.1
CT5 9.1 15.6 0.0 5.0 13.3 0.9 14.8 0.8 5.2 3.3 6.6
CT6 2.1 0.6 0.0 1.6 5.7 0.1 65.0 0.2 4.3 2.2 7.4
CT7 36.9 50.0 100.0 80.6 0.0 76.9 0.0 56.2 56.7 31.8 33.4
CT8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.7 1.0 2.2 18.7

Figure 6. Distribution of HTS data. The relative distribution of
biological data as recorded by the HTS assay expressed by decile
(squares), and a fitted Gaussian distribution function (dotted line).

Table 4. HTS Data Binning Schemes. Compounds in the
Training Sets Were Assigned to One of Four Activity Bins,
Depending on Their Biological Activity as Recorded by the
HTS Assay. Class 4 Is Considered “Highly Active”, Class 3
“Moderately Active”, Class 2 “Weakly Active”, and Class 1
“Inactive”. The Distributions for Three Different Thresholds
Are Presented Here

class “80”a “85”a “90”a

4 g80 (2.9%) g85 (2.1%) g90 (1.2%)
3 <80,g50 (9.4%) <85,g60 (6.0%) <90,g70 (3.5%)
2 <50,g25 (18.2%) <60,g30 (17.7%) <70,g30 (21.1%)
1 <25 (69.4%) <30 (74.2%) <30 (74.2%)
a Numbers in parentheses represent the classification rates for

the DS training set.
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threshold to a class 4 assignment, thereby potentially bringing
them within the confidence interval of class 3 in a quaternary
classification or the “inactive” class of a binary classification.

We also investigated whether a binary descriptor set would
be more appropriate for a binary stratification of biological
data by applying the binary classification to the 166 public
ISIS MolsKeys, and we found this to not appreciably
improve the predictivity of the models (Table 1; Twoing-
7-20), nor affect the quality of the models (Figure 5a,b). We
therefore based all work on a quaternary classification of
the biological data.

Concluding Remarks

In this paper we have demonstrated that nonparametric
methods with nonbinary (continuous range) descriptors
derived from a 20 986-member combinatorial library can be
effectively employed to differentiate between active and
inactive compounds, based on data from an experimental
HTS assay. Moreover, in a truly experimental fashion we
have demonstrated that we can improve the hit rate of our
primary screens by about 4-fold, and in doing so correctly
identify 75% of all hits while reducing the size of the
chemical library to be screened by over 80%. Furthermore,
even though up to 25% of all individual hits go undetected
when this particular analysis is employed as a prescreening
method, all chemotypes with known activity were correctly
identified. This then opens up the possibility to pursue missed
hits and potentially identify false negatives during subsequent
screening or SAR development.

Thus, we believe that we have satisfied the goals set at
the outset of the analysis:

(1) The ability to increase the efficiency of our primary
screens: we have demonstrated that this approach allows
us to increase the efficiency of this particular HTS assay by
a moderate 4-fold and speculate that we can achieve higher
efficiency still by fine-tuning the process and HTS param-
eters.

(2) The option to pursue multiple chemotypes in order to
develop compounds along parallel product lines: this ap-
proach has allowed us to correctly identify almost 75% of
all hits, and even more importantly, all chemotypes known
to be active.

(3) The ability to explain nonlinear structure-activity
relationships: the analysis indicates that at least two and
possibly more binding modes are represented by the com-
binatorial library and HTS data set, thus allowing us to pursue
different pathways to treat ion channel related diseases.

While the role of molecular diversity and the influence of
false positive data on interpretation of HTS screening results
has been the subject of much speculation, most computational
methods described to date utilize confirmed data from
compound collections that tend to be poorly diverse. In
reality, the level of diversity in a screening set can be highly
controlled. On the other hand, HTS data by its nature is
unconfirmed and will contain some level of false positive
and false negative data. One of the goals of our work is to
develop a method that is sufficiently robust to accommodate
false positives and false negatives without compromising the
utility of the results. Our current studies using “real world”

HTS screening data show that RP will accommodate this.
We are now investigating the role of library diversity on
this process. The results of this study will be the subject of
a future report.

On the basis of the tentative evidence that RP can
differentiate between multiple binding modes, we speculate
that it will be possible to include multiple targets in a single
HTS data set to deduce SARs for the individual targets.
Additionally, we surmise that if the biological targets are
related by their gene family, we may be able to establish a
generalized SAR for the entire gene family. We have dubbed
this approach “gene family libraries”. Chemical libraries thus
developed should have a higher propensity to identify hits
from gene family related HTS data, even if the individual
target has not been screened before. Furthermore, this
approach could allow us to “stake out” the territory in
diversity space where chemical and biological diversity
spaces intersect. This work is ongoing and will be reported
in the future.
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